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,��&XPXODWLRQ

��0RGHV�RI�XVLQJ�VXUYH\�GDWD
Policy research requires indicators of poverty and social exclusion 
GLVDJJUHJDWHG�WR�ORZHU�OHYHOV�DQG�VPDOOHU�VXESRSXODWLRQV. Direct, one-time 
estimates from surveys are normally insufficiently precise for the purpose, 
particularly concerning poverty and social exclusion which involve complex 
distributional statistics based on relatively small-scale surveys. 
Survey data can be used in different forms or manners to construct regional 
indicators.
(1) Direct estimates from survey data – provided regional sample sizes are 
adequate for the purpose.
(2) Constructing alternative (but similar) indicators utilising available data more 
intensively.
(3) &XPXODWLRQ�RI�GDWD�RYHU�VXUYH\�ZDYHV�WR�LQFUHDVH�SUHFLVLRQ�RI�WKH�GLUHFW�
HVWLPDWHV�

(4) Using survey data in conjunction with other sources using small area 
estimation techniques.
(5) Going altogether beyond the survey by exploiting other sources.

In the context of SAMPLE project, we here address (3) –estimates for 
subnational regions in EU countries through the cumulation of data over time. 
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��*DLQ�LQ�SUHFLVLRQ�IURP�FXPXODWLRQ�RYHU�ZDYHV

&RQVLGHU�SRYHUW\�UDWHV�DYHUDJHG�RYHU�D�QXPEHU�RI�FRQVHFXWLYH�ZDYHV��

7KH�LVVXH�LV�WR�TXDQWLI\�WKH�JDLQ�LQ�VDPSOLQJ�SUHFLVLRQ�IURP�VXFK�SRROLQJ��JLYHQ�

WKDW�GDWD�IURP�GLIIHUHQW�ZDYHV�RI�D�URWDWLRQDO�SDQHO�DUH�KLJKO\�FRUUHODWHG��)RU�

WKLV�SXUSRVH��VWDQGDUG�YDULDQFH�HVWLPDWLRQ�PHWKRGRORJ\�VXFK�DV�-55�FDQ�EH�

HDVLO\�H[WHQGHG��DQG�,�ZLOO�EULHIO\�UHWXUQ�WR�WKDW� ,W�LV�PRUH�LOOXPLQDWLQJ�WR�

SURYLGH�KHUH�D�VLPSOLILHG�SURFHGXUH�IRU�TXDQWLI\LQJ�WKH�JDLQ�LQ�SUHFLVLRQ�IURP�

DYHUDJLQJ�RYHU�WZR�ZDYHV��:LWK�SM DQG�S
M WKH��������LQGLFDWRUV�RI�SRYHUW\�RI�

LQGLYLGXDO�M�RYHU�WKH�WZR�DGMDFHQW�ZDYHV��ZH�KDYH�

similarly,

where ‘a’ is the persistent poverty rate over the two years
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For the simple case where the two waves completely overlap and 

variance vA for the averaged measure is: 

with correlation 

The correlation between two periods is expected to decline as the two become 
more widely separated, and the model can be easily extended to the general 
case.

For application to pairs of waves in EU-SILC, allowing for variations in cross-
sectional sample sizes and partial overlaps, we have: 

where V1 and V2 are the sampling variances, n is the overlap between the 
cross-sectional samples, and nH is the harmonic mean of their sample sizes n1
and n2.
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7DEOH����*DLQ�IURP�FXPXODWLRQ RYHU�WZR�ZDYHV��FURVV�VHFWLRQDO�DQG�

SHUVLVWHQW�SRYHUW\�UDWHV��,OOXVWUDWLRQ��3RODQG�(8�6,/&����������

Sample  Poverty rate Est n %se*   mean  HCR: poverty line 
 base     persons actual    income national regional 
&6������ HCR 2006 19.1 45,122 0.51  ���� 0.42 0.34 0.40 
&6������ HCR 2005 20.6 49,044 0.45  ���� 1.31 1.18 1.18 
/*������� HCR 2006 18.5 32,820   ���� 0.55 0.40 0.47 
/*������� HCR 2005 20.2 32,820   ���� 0.60 0.48 0.56 

/*�������
Persistent ‘05-
06 12.5 32,820   

 
���� 14% 30% 30% 

 
Rows (1)-(5) of the table are as follows.
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years   
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��'HVLJQ�HIIHFW�DQG�LWV�FRPSRQHQWV
A most useful concept concerns ‘design effect’ - the ratio of variance (v) under the 
given sample design, to variance (v0) under a simple random sample of the same 
size: 

00
2 , VHVHGYYG ==

Proceeding from sampling error to design effects is essential for understanding 
patterns of variation and determinants of sampling error, for smoothing and 
extrapolating results of computations, and for evaluating performance of the 
sampling design. 

In applications for EU-SILC, there is a special reason for decomposing the 
design effect. With limited information on sample structure included in the 
available micro-data, computation of variances cannot be done in many cases.

Decomposition of variances and design effects identifies more ‘portable’
components, which are more easily carried over from a situation where they can 
be computed, to another situation where such direct computations are not 
possible. Thus we can at least partly overcome the problem due to lack of 
information on sample structure.
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We may decompose total variance v (for the actual design) into the components as 

( )2
0

2
0 ..... ;'+: GGGGYGYY ==

where 

dW is the effect of sample weights, 

dH of clustering of individual persons into households, 

dD of clustering of households into dwellings, and 

dX that of other complexities of the design, mainly clustering and stratification. 

All factors other than dx do not involve clusters or strata, but depend only on 
individual elements in the sample. Parameter dW depends on variability of 
sample weights, and secondly also on the correlation between the weights and 
the variable being estimated; dH is determined by the size or the number of 
relevant individuals in the household, and similarly dD by the number of 
households per dwelling in a sample of the latter. 

By contrast, factor dX represents the effect of various complexities of the 
design. Hence unlike other components, dX requires information on the sample 
structure (clustering and stratification). 
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7DEOH����(VWLPDWLRQ�RI�YDULDQFH�DQG�GHVLJQ�HIIHFWV�DW�WKH�QDWLRQDO�

OHYHO��,OOXVWUDWLRQ��3RODQG�(8�6,/&������FURVV�VHFWLRQDO�VDPSOH�
(a two stage stratified sample of dwellings containing 45,122 individual persons)

  Estimate %se 
Design 
effect   %se 

   actual dX dW dH d SRS 
(1) 3,704 0.57 0.94 1.22 1.74 1.99 0.29 
(2) 19.1 0.51 1.02 1.09 1.74 1.94 0.26 
(3) 19.0 0.61 1.05 1.09 1.74 1.99 0.30 

 

(1) Mean equivalised disposable income

(2) HCR – ‘head count’ or poverty rate, using national poverty line

(3) HCR – ‘head count’ or poverty rate, using regional (NUTS1) poverty line

“%se”: for mean statistics e.g. equivalised disposable income – expressed as 
percentage of the mean value; for proportions and rates (e.g. poverty rates) –
given as absolute percent points. 
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As we go from national to regional level, all the values, except “%se SRS” and 

dX, are computed at regional level in the same manner as the national level. All 
factors other than dX do not involve clusters or strata, but essentially depend 
only on individual elements. Hence normally they are well estimated, even for 
quite small regions. 

The quantity (%se* SRS) can be directly computed at the regional level, just 
as for the national level. However, very good approximation can be usually 
obtained very simply without involving JRR computations of variance. 

1. For means (such as equivalised income) over very similar populations, 
assumption of a constant coefficient of variation is reasonable, giving: 

2. For proportions (p, with q=100-p), with standard error expressed in absolute 
percent points, we can take: 

A poverty rate may be treated as proportions for the purpose of applying the 
above. 
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Factor 

for a region (G) may be estimated in relation to 

estimated at the country (C) level on the following lines. 

1. For large regions, each with a large enough number of PSUs (say over 25 or 
30), we may estimate the variance and hence 

directly at the regional level. 

2. Sometimes a region involves a SRS of elements, even if the national sample is 
multi-stage in other parts; here obviously, 

If the sample design in the region is the same or very similar to that for the country 
as a whole – which is quite often the case – we can take 

It is common that the main difference between the regional and the total samples is 
the average cluster size (b). In this case we use 

If 

the above equation is replaced by 
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��*DLQ�LQ�SUHFLVLRQ�IURP�DYHUDJLQJ�RYHU�FRUUHODWHG�VDPSOHV�IRU�WZR�

FRQVHFXWLYH�ZDYHV��3RODQG�1876��UHJLRQV
0HDQ�HTXLYDOLVHG�LQFRPH�

�� &RXQWU\� 3/�� 3/�� 3/�� 3/�� 3/�� 3/��

(1) 0.42 0.94 0.83 0.92 1.15 1.28 1.07 
(2) 1.31 1.33 1.30 1.31 1.27 1.32 1.32 
(3) 0.55 1.26 1.08 1.20 1.47 1.70 1.41 
(4) 0.60 1.33 1.17 1.30 1.62 1.81 1.51 
(5) ���� 11% 15% 14% 18% 12% 12% 

+&5�QDWLRQDO�SRYHUW\�OLQH�

�� &RXQWU\� 3/�� 3/�� 3/�� 3/�� 3/�� 3/��

(1) 0.34 0.70 0.65 0.88 0.89 1.06 0.94 
(2) 1.18 1.18 1.17 1.18 1.18 1.17 1.19 
(3) 0.40 0.83 0.76 1.03 1.05 1.23 1.12 
(4) 0.48 0.99 0.92 1.24 1.26 1.50 1.33 
(5) ���� 29% 31% 30% 30% 32% 29% 

+&5�UHJLRQDO�SRYHUW\�OLQH�

�� &RXQWU\� 3/�� 3/�� 3/�� 3/�� 3/�� 3/��

(1) 0.40 0.86 0.83 0.94 1.03 1.29 1.05 
(2) 1.18 1.18 1.18 1.17 1.18 1.17 1.18 
(3) 0.47 1.02 0.98 1.10 1.21 1.51 1.24 
(4) 0.56 1.21 1.16 1.33 1.45 1.82 1.49 
(5) ���� 29% 29% 31% 30% 31% 31% 

 

5RZV�����± ����KDYH�EHHQ�GHILQHG�LQ�7DEOH���

For mean equivalised income, generally the coefficient of correlation between 
consecutive waves exceeds 0.70 – hence much smaller gain from cumulation.
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,,��$VSHFWV RI�SRROLQJ

Objectives
(1) Cumulation or aggregation in order to obtain more precise estimates, albeit 
normally with some loss of detail. 
(2) Comparisons of trends and differences across populations and times. 
(3) Meeting the more general and broader objective of FRPPRQ�LQWHUSUHWDWLRQ of 
statistical information from different sources and/or for different populations in 
relation to each other and against common standards.

Prerequisite: comparability

Diverse scenarios

D.dD.sDifferent /Dissimilar (D)

S.dS.sSame/Similar (S)

different /dissimilar (d)same/similar (s)3RSXODWLRQ

'DWD�VRXUFH
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3RROLQJ�RI�GDWD�YHUVXV�SRROLQJ�RI�HVWLPDWHV

We may distinguish between SRROLQJ�RI�GDWD, i.e. aggregation of micro-level data for 
the same or different populations, surveys and times, on the one hand, and the 
SRROLQJ� RI� HVWLPDWHV, i.e. the production of a common estimate as a function of 
estimates produced from individual data sources.

Lφ
Lφ

LL3 φφ .Σ=

Let us consider estimate 

for a certain statistic for country L. In comparisons, each 

of course receives the same weight. For estimates aggregated over EU countries, 
of the form                                                     

the most common practice by far is to take the weights 3L� in proportion to the 
countries’ population size, thus producing statistics for the ‘average EU citizen’. 
By contrast, in much policy debate, it is the situation in the ‘average EU country’
that is of interest; this amounts to taking the 3L values as equal. 

Whatever the choice of 3L, the above formulation involves pooling country-level 
estimates. Given standardised data sets from all countries, pooling at the micro-
level is also possible, with unit weights ZLM scaled as ( )LMLLMLM Z3ZZ Σ=′ .
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3DQHOV�LQ�D�URWDWLRQDO�GHVLJQ

1RWH� The numbers in the cells of the diagram indicate the type(s) of observations provided 
by the subsample. The above numbers may be multiplied by the subsamples size to obtain 
the cumulated number of observations.
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5HGXFWLRQ�LQ�YDULDQFH�E\�SRROLQJ�GDWD�IRU�VXEVDPSOHV

Variance decreases in inverse proportion to sample size, provided that the 
subsamples making up the total sample are LQGHSHQGHQW (e.g., if in EU-SILC each 
subsample is based on a different set of clusters ).

In computing measures for the cross-section, the common practice is simply to 
pool the cases from the subsamples. This amounts to giving each subsample a 
‘weight’ in proportion to its sample size, i.e. inversely proportion to its expected 
variance, which is an efficient (optimal) procedure in the absence of bias. Consider 
two panels with same variance V2, but the second (older) one also subject to bias 
B due to non-response. Pooling them with weights :��:� respectively (:��:�=1) 
gives MSE composed of

and bias2  

Variance is minimised with :� :�=0.5, but bias can be reduced 
by taking :��0.5, i.e. giving less weight to the older panel. 
The optimal choice of the weights depends on the bias ratio 

variance
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5HGXFWLRQ�RI�YDULDQFH�IURP�DYHUDJLQJ�GLIIHUHQW�SRYHUW\�WKUHVKROGV

Consider three poverty line thresholds, with poverty rates

with fixed weights Wi, the final rate is computed as

For simplicity, take the sample as SRS and approximate the complex statistic 
‘poverty rate’ as an ordinary proportion. Its variance is given by 

321 SSS <<

LLL S:S .Σ=

( ) ( ) ( )MLMLLMLLL SS::S:S ,cov..2var.var 2
<Σ+Σ=. 
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5HGXFWLRQ�IURP�DYHUDJLQJ�RYHU�URXQGV�LQ�D��URWDWLRQDO�GHVLJQ

Consider a rotational sample in which each unit stays in the sample for n 
consecutive periods, with the required estimate being the average over Q 
consecutive periods. The case n=1 corresponds simply to independent samples 
each quarter. Under the simplifying assumption of uniform variances, variance of 
the estimate of average over Q period is  

499D
22 =

The total sample involved in the estimation consists of (n+Q-1) independent 
subsamples. Each subsample is ‘observed’ over a certain number of consecutive 
periods within the interval (Q) of interest. In principle, for a given subsample the 
sample cases involved in these ‘observations’ are fully overlapping. For 
‘observation’ we mean surveying one subsample on one occasion. The 
distribution of the (n+Q-1) subsamples according to the number of observation (m) 
provided is:
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1R��RI�REVHUYDWLRQV��P�Æ

where m1=min(n, Q) and m2=max(n, Q).
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For illustration, consider Q=m1=4, n=m2=5.
There are 2 contributing subsamples for each number 1, 2 and (m1-1)=3 of 
observations; and in addition there are m2-(m1-1)=2 subsamples, each 
contributing m1=4 observations.
Similarly, for Q=m2=4, n=m1=3, we have 2 contributing subsamples for each 
number 1 and (m1-1)=2 of observations, and in addition m2-(m1-1)=2 subsamples
each contributing m1=3 observations.

� y y

� y
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� y
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� y y y y
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Q ���µREVHUYDWLRQV¶ SURYLGHG �
� ��� Q ���µREVHUYDWLRQV¶ SURYLGHG �
� ���

1RWH��7KH�QXPEHUV�RQ�WKH�OHIW�VLGH�RI�WKH�ILJXUHV�UHSUHVHQW�WKH�QXPEHU�RI�

VXEVDPSOHV �Q�4����
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In order to provide a simplified formulation of the effect of correlation arising from 
sample overlaps, we assume the following model. If R is the average correlation 
between estimates from overlapping samples in adjacent periods (as defined 
above), then between points one period apart (e.g. between the 1st and 3rd 
quarters), the average correlations is reduced to R2, the correlation between 
points two periods apart (e.g. the 1st and the 4th quarters) is reduced to R3, and 
so on.
Consider a subsample contributing m observations during the interval (Q) of 
interest with full sample overlap. Considering all the pairs of observations 
involved and the correlations between them under the method assumed above, 
variance of the average over the m observations is given by

( ))(1
2

2 PI
P

9
9P +⋅=

{ }12 ...)2()1(
2

)( −++⋅−+⋅−⋅= P55P5P
P

PI

Where

The term                                             reflects the loss in efficiency in cumulation

or averaging over overlapping samples, compared to cumulation over entirely 
independent samples. 
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In estimating the average using the whole available sample of 

subsample observations, we may simply give each observation the same weight. 

Taking into account the number of observations and the variances involved, the 
resulting variance of the average becomes

)2(
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I�P�m
For various values of 
m:
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&RQFOXGLQJ�UHPDUN��REMHFWLYHV�RI�SRROLQJ

It may be argued that averaging and similar ‘manipulation’ is not acceptable, or at 
least that it introduces bias, since it DOWHUV the measures we obtain. This may be 
true in a literal sense but this is not a sensible objection in many situations. We 
need a pragmatic and not an ideological approach to statistics. All statistical 
measures are constructed for the purpose of conveying some meaning, for 
providing some interpretation to real and complex situations. The particular forms 
of measures chosen are always determined by considerations of usefulness and 
practicality, are always compromises and in themselves not ‘sacred’. 
The objectives of pooling include searching for measures which convey 
essentially the same information but in a PRUH�UREXVW manner, reducing random 
variability or noise. 
A related objective of pooling is WUDGLQJ�GLPHQVLRQV – gaining in some more 
needed directions by losing something less needed for particular purposes – such 
as permitting more detailed geographical breakdown but with less temporal detail.
A third objective is to VXPPDULVH over different dimensions, providing more 
consolidated and fewer indicators. Such indicators are of course different from the 
more numerous ‘raw’ indicators, but are often more, or at least equally, 
meaningful and useful.
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,,,��-55�)25�9$5,$1&(�(67,0$7,21

��7KH�VWDQGDUG�-55�SURFHGXUH�IRU�YDULDQFH�HVWLPDWLRQ

Jackknife Repeated Replication (JRR) provides a versatile technique for 
variance estimation. It is one of the classes of variance estimation methods 
based on comparisons among replications generated through repeated re-
sampling of the same parent sample. Each replication needs to be a 
representative sample in itself and to reflect the full complexity of the parent 
sample.

The JRR variance estimates take into account the effect on variance of aspects 
of the estimation process which are allowed to vary from one replication to 
another. In principle this can include complex effects such as those of 
imputation and weighting. But often in practice it is not possible to repeat such 
operations entirely fresh at each replication.

A major advantage of the JRR procedure is that, under quite general conditions, 
the same and relatively simple variance estimation formula holds for statistics of 
any complexity. 
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7KH�EDVLF�PRGHO�RI�WKH�-55

Consider a design in which two or more primary units (PSU) have been selected 
independently from each stratum. Within each PSU, subsampling of any complexity 
may be involved. Each JRR replication is formed by eliminating one sample PSU 
from a particular stratum at a time, and increasing the weight of the remaining 
sample PSU’s in that stratum appropriately so as to obtain an alternative but 
equally valid estimate to that obtained from the full sample. 

Let u be a full-sample estimate of any complexity, and u(hi) be the estimate 
produced using the same procedure after eliminating primary unit i in stratum h and 
increasing the weight of the remaining (ah-1) units in the stratum by an appropriate 
factor 

Let u(h) be the simple average of the u(hi) over the ah values of i in h. Then:
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��9DULDQFH�HVWLPDWLRQ�XQGHU�FXPXODWLRQ XVLQJ�-55

For the purpose of estimating variance of cumulated measures, the JRR variance 
estimation methodology is easily extended. 

The total sample of interest is formed by the union of all the cross-sectional 
samples being aggregated. Using as basis the common structure of this total 
sample, each replication is formed such that when a unit is to be excluded in its 
construction, it is excluded simultaneously from every wave where the unit 
appears.

For each replication, the required measure is constructed for each of the cross-
sectional samples, and these measures are used to obtain the required averaged 
measure corresponding to the particular the replication, from which variance is 
then estimated in the usual way.

Once the set of replications has been appropriately defined, the same variance 
estimation algorithm can be applied to a statistic of any complexity: for estimating 
variances for subpopulations (including regions), longitudinal measures such as 
persistent poverty rates, or measures of net changes and averages over time. 
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Analysis of design effects into components is needed for several purposes, but 
there is another important reason: with JRR design effect can only be estimated by 
estimating (some of) its components separately. 

We decompose total variance v into the components as 

All factors other than dx depend only on individual elements. 

By contrast, factor dX represents the effect on sampling error of complexities of the 
design (clustering and stratification). To estimate this effect using the JRR 
procedures, we compute variance under two assumptions about structure of the 
design: 

•variance v under the actual design, and 

•variance vR computed assuming the design to be (weighted) simple random 
sampling of the ultimate units - estimated from a ‘randomised sample’ created 
from the actual sample by completely disregarding its structure other than the 
weights attached to individual elements. 

This gives 

with 
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��$�PDMRU�VKRUWFRPLQJ��LQIRUPDWLRQ�RQ�VDPSOH�VWUXFWXUH�LQ�(8�6,/&

Appropriate coding of the sample structure, in the survey micro-data and 
accompanying documentation, is an essential requirement in order to compute 
sampling errors taking into account the actual sample design. 

Lack of information on the sample structure in survey data files is a long-standing 
and persistent problem in survey work, and unfortunately affects EU-SILC as 
well. 

Indeed, WKH�PDMRU�SUREOHP�LQ�FRPSXWLQJ�VDPSOLQJ�HUURUV�IRU�(8�6,/&�LV�WKH�ODFN�
RI�VXIILFLHQW�LQIRUPDWLRQ�IRU�WKLV�SXUSRVH�LQ�WKH�PLFUR�GDWD�DYDLODEOH�WR�

UHVHDUFKHUV�

We have developed approximate procedures in order to overcome these 
limitations at least partially, and used them to produce useful estimates of 
sampling errors. Use has been made of these results in this presentation, but it is 
not possible here to go into detail concerning them.
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,9��)X]]\�PHDVXUHV�RI�SRYHUW\�DQG�GHSULYDWLRQ��

WKH�FRQFHSW�DQG�YDULDQFH�HVWLPDWLRQ

The introduction of fuzzy measures brings in DGGLWLRQDO considerations and 
choices such as:

0HPEHUVKLS�IXQFWLRQV: a quantitative specification of the propensity to 
poverty and deprivation of each person given the level and distribution of 
income and resource.

5XOHV�IRU�PDQLSXODWLRQ of the resulting fuzzy sets: defining 
complements, intersections, union and aggregation of the sets.

To be meaningful both these choices must meet some basic logical and 
substantive requirements.
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'HILQLWLRQ�RI�WKH�PHPEHUVKLS�IXQFWLRQ EDVHG�RQ�PRQHWDU\�YDULDEOHV
(Betti, Cheli Lemmi and Verma (2005, 2006))

Where parameter       is chosen so that the mean of the m.f. is equal to head 
count ratio H:
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3RYHUW\�DQG�LQHTXDOLW\

Fuzzy Monetary (FM) measure as defined above is expressible in terms of 
the generalised Gini measures. This family of measures (often referred to as 
"s-Gini") is a generalisation of the standard Gini coefficient, the latter 
corresponding to G   with     =1. 

It is defined (in the continuous case) as:

The authors have defined it as “Integrated Fuzzy and Relative” (IFR)

α

( ) ( )( ) ( )( )[ ]dF.FLF.F1.1.G
1

0

1∫ −−+αα= −α
α
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0HPEHUVKLS�IXQFWLRQ�EDVHG�RQ�VXSSOHPHQWDU\�YDULDEOHV �)6�

Quantification and putting together a large set of non-monetary indicators 
of living conditions involves a number of steps, models and 
assumptions.

1. selection of indicators which are substantively meaningful and useful: 
mostly used ‘objective’ indicators

2. identifying underlying dimensions: this is done via factor analysis and 
sensible considerations; grouping the indicators accordingly

3. assigning numerical values to ordered categories
4. weighting of measures
5. scaling of measures
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0HPEHUVKLS�IXQFWLRQ�EDVHG�RQ�VXSSOHPHQWDU\�YDULDEOHV �)6�

Here we have adopted the methodology of the 6HFRQG�(XURSHDQ�UHSRUW�RQ�
3RYHUW\��,QFRPH�DQG�6RFLDO�([FOXVLRQ (Eurostat, 2002)

Elementary indicators are combined to form an index describing an overall 
degree of deprivation. The individual’s score averaged over items (k) is written 
as the weighted mean:

where the weights wk are defined taking into account dispersion and 
correlation among items.

( ) kkk,jkkj ws.wS ΣΣ=
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,QFRPH�SRYHUW\�DQG�QRQ�PRQHWDU\�GHSULYDWLRQ�LQ�FRPELQDWLRQ

The two measures FMj propensity to income poverty, and FSj the overall 
life–style deprivation propensity, may be combined to construct composite 
measures which indicate the extent to which the two aspects of income 
poverty and life-style deprivation overlap for the individual concerned. 
These measures are as follows.

•Mj manifest deprivation, 

representing the propensity to both income poverty and life-style 
deprivation simultaneously. It represents the individual being subject to 
both income poverty and life-style deprivation; one may think of this as the 
‘Panifest’ or the ‘Pore intense’ degree of deprivation.

•Lj latent deprivation, 

representing the individual being subject to at least one of the two, income 
poverty and/or life-style deprivation; one may think of this as the ‘Oatent’ or 
the ‘Oess intense’ degree of deprivation.



34

2Q�VWUXFWXUH�RI�WKH�-55�YDULDQFH�FRPSXWDWLRQ�DOJRULWKP

3DUDPHWHUV�LQYROYHG�LQ�WKH�GHILQLWLRQ�RI�D�PHDVXUH

In the constant parameter version, we write the poverty or inequality measure in 
the form of an ordinary ratio, treating the parameters involved in the definition of 
the measures as constants. The micro-level variables (ui), as defined using the 
parameters L estimated from the full sample, are used unchanged, the only 
difference being the set of units and their adjusted weights included in the 
computation of the required statistic (say Uk) for each replication k. In other 
words, these parameters are computed only once based on micro data for the 
full sample and are used unchanged in each replication.

In the variable parameter (i.e., real) version, the results are produced by treating 
the parameters involved as variable from one replication to another: the micro-
level variables (ui) are redefined in each replication, using the parameters Λ
estimated for that replication, based on micro data for the sample cases 
included in that replication.

In general, by repeating the entire estimation procedure independently for each 
replication the effect of various complexities, such as each step of a complex 
weighting procedure, can be incorporated into the variance estimates produced.
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( )LNLNLN XZ8 .,∈Σ=

( )kik,i ,suu Λ= ( )NLNLNLN XZ8 ,, .∈Σ=

Sk refers to replication k; 
si are the values for a variable or set of variables for unit i in the sample; 
ui refers to the variable for unit i, the weighted sum of which gives the statistic 
of interest U. 
ui,k and Uk refers to the corresponding quantities for a particular replication k. 
Λ is the set of parameters, estimated form the sample, which are involved in 
the definition of U and ui. 
Λk is the corresponding estimate based on replication k.

ik,i uu =Λ=Λk

Variable
parameter

Constant parameter

Replication Sk

Full sample, S ( )sΛ=Λ ( )Λ= ,suu ii iisi u.wU ∈Σ=

( )kk SΛ=Λ
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,Q�WKH�FDVH�RI�FRQYHQWLRQDO�SRYHUW\�UDWH�

parameter  refers to the poverty line, different by replication k. In the variable 
version of the method, the individual dichotomous (0,1)  values uik are affected 
in the region of changes in the poverty line. 

,Q�FRUUHVSRQGLQJ�DSSOLFDWLRQ�WR�IX]]\�SRYHUW\�RU�GHSULYDWLRQ��

the parameters involved are a and the weights used to put together individual 
items of deprivation to construct deprivation dimensions. We treat these as 
‘external’ parameters, not varied from one replication to another. Nevertheless, 
the individual uik values can vary from one replication to another because they 
depend on the whole distribution (actually on the ranking of individuals in the 
income distribution).


